Selective Targeting of Amyloid-β Oligomer Species by PMN310, a Monoclonal Antibody Rationally Designed for Greater Therapeutic Potency in Alzheimer’s Disease

Johanne Kaplan, PhD
Chief Development Officer
ProMIS Neurosciences
• Johanne Kaplan is Chief Development Officer of ProMIS Neurosciences
PHOTO, VIDEO AND AUDIO POLICY

Photography is welcome in this presentation.

Video and audio recording are prohibited.
Soluble Aβ oligomers now recognized as the most neuropathogenic Aβ species -> Spread in a prion-like manner

Specific targeting of toxic Aβ oligomers required for optimal efficacy and safety

Target Profile for Amyloid-β-Targeted Antibody

<table>
<thead>
<tr>
<th>Property</th>
<th>Therapeutic advantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No binding to monomers in circulation or CNS</td>
<td>More antibody reaches oligomer target</td>
</tr>
<tr>
<td>No binding to plaque or vascular deposits</td>
<td>Reduced risk of ARIA allows for higher dosing</td>
</tr>
<tr>
<td>Selective binding and neutralization of synthetic toxic oligomers in vitro and in vivo</td>
<td>Therapeutic activity focused on pathogenic target</td>
</tr>
<tr>
<td>IgG4 isotype (low effector isotype)</td>
<td>Reduced risk of inflammation</td>
</tr>
<tr>
<td>High degree of reactivity to toxic oligomer-enriched fraction of AD brain</td>
<td>Effective against native oligomers from patients</td>
</tr>
<tr>
<td>Brain exposure and kinetics equivalent to other antibody candidates</td>
<td>Potential to safely administer high doses with a reduced risk of ARIA likely to result in greater therapeutic potency</td>
</tr>
</tbody>
</table>
COMPUTATIONAL PLATFORM PREDICTS CONFORMATIONAL HHQK EPITOPE OF A\(\beta\) OLIGOMER

Computer modeling identifies sequences (epitopes) likely to be exposed in toxic oligomers but not in monomers or fibrils

\(-\) Regions most prone to exposure thermodynamically

Rationally scaffolded cyclic peptide to mimic the conformation of the epitope as exposed in the oligomer, distinct from the monomer or fibril

\(-\) Use for immunization
PMN310 SELECTIVELY BINDS Aβ OLIGOMERS VS MONOMERS OR PLAQUE

SPR binding response

- huPMN310
- huIgG4

 binding response

hulgG4 isotype control

Vascular deposit

Plaque

Aducanumab

Bapineuzumab

huPMN310

100µm
HIGH PREFERENTIAL BINDING OF PMN310 TO THE TOXIC OLIGOMER-ENRICHED LMW FRACTION OF SOLUBLE AD BRAIN EXTRACT

Reproducible pattern of brain extract fractionation by size exclusion chromatography

High, preferential binding of PMN310 to LMW fraction vs other Aβ-directed antibodies
PMN310 INHIBITS IN VITRO PROPAGATION AND TOXICITY OF Aβ OLIGOMERS

Inhibition of aggregation propagation in vitro
(Thioflavin-based assay)

Inhibition of Aβ oligomer toxicity in vitro
(Primary mouse cortical neurons)
Administration of PMN310 to mice completely prevents the loss of short-term memory formation caused by toxic oligomers.
Decrease in hippocampal marker of inflammation

Preservation of hippocampal synaptic proteins

TNF-α

<table>
<thead>
<tr>
<th></th>
<th>Veh.</th>
<th>PMN310</th>
<th>AβO</th>
<th>PMN310 + AβO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNF-α</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.5</td>
</tr>
</tbody>
</table>

PSD-95

<table>
<thead>
<tr>
<th></th>
<th>Veh.</th>
<th>PMN310</th>
<th>AβO</th>
<th>PMN310 + AβO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSD-95</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

SNAP25

<table>
<thead>
<tr>
<th></th>
<th>Veh.</th>
<th>PMN310</th>
<th>AβO</th>
<th>PMN310 + AβO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP25</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

* indicates a significant decrease compared to Veh.
indicates a significant preservation compared to AβO
IN VIVO BRAIN EXPOSURE AND KINETICS

Equivalent CNS penetrance of PMN310 and aducanumab

PMN310 detectable in the brain and circulation out to day 21 post-administration

Human IgG in Brain (ng/g)

Brain
Plasma

Human IgG in Plasma (µg/mL)

PBS
Aducanumab
HuPMN310

Human IgG in Brain (ng/g)

0 100 200 300 400

Human IgG in Plasma (µg/mL)

PBS
Aducanumab
HuPMN310

Human IgG in Brain (ng/g)

0 500 1000 1500

0 100 200 300 400

0 100 200 300 400

0 300 400 500 600

Day 1 Day 7 Day 14 Day 21

24hr
PMN310 may provide greater therapeutic potency and safety compared to other Aβ-directed antibodies

- Selective targeting of toxic Aβ oligomers (not monomers or plaque) should improve oligomer clearance and inhibit disease propagation and neuroinflammation

- Equivalent CNS penetrance and selectivity for toxic Aβ oligomers should translate into a higher effective dose

- Lack of binding to Aβ plaque and vascular deposits, along with an IgG4 isotype, reduces the risk of ARIA and is expected to allow for safe administration of higher doses
ACKNOWLEDGMENTS

University of British Columbia
 Neil Cashman
 Ebrima Gibbs
 Judith Silverman
 Beibei Zhao
 Jing Wang
 Steven Plotkin
 Xubiao Peng
 Cheryl Wellington
 Ian Mackenzie

ProMIS Neurosciences
 Gene Williams
 Elliot Goldstein
 James Kupiec

Case Western Reserve University
 Jiri Safar

SynAging
 Thierry Pillot
 Violette Koziel
 Ahmad Allouche

ImmunoPrecise
 Louise Singer
 Teri Otto